Tissue-specific pyruvate dehydrogenase complex deficiency causes cardiac hypertrophy and sudden death of weaned male mice.
نویسندگان
چکیده
Pyruvate dehydrogenase complex (PDC) plays an important role in energy homeostasis in the heart by catalyzing the oxidative decarboxylation of pyruvate derived primarily from glucose and lactate. Because various pathophysiological states can markedly alter cardiac glucose metabolism and PDC has been shown to be altered in response to chronic ischemia, cardiac physiology of a mouse model with knockout of the alpha-subunit of the pyruvate dehydrogenase component of PDC in heart/skeletal muscle (H/SM-PDCKO) was investigated. H/SM-PDCKO mice did not show embryonic lethality and grew normally during the preweaning period. Heart and skeletal muscle of homozygous male mice had very low PDC activity (approximately 5% of wild-type), and PDC activity in these tissues from heterozygous females was approximately 50%. Male mice did not survive for >7 days after weaning on a rodent chow diet. However, they survived on a high-fat diet and developed left ventricular hypertrophy and reduced left ventricular systolic function compared with wild-type male mice. The changes in the heterozygote female mice were of lesser severity. The deficiency of PDC in H/SM-PDCKO male mice greatly compromises the ability of the heart to oxidize glucose for the generation of energy (and hence cardiac function) and results in cardiac pathological changes. This mouse model demonstrates the importance of glucose oxidation in cardiac energetics and function under basal conditions.
منابع مشابه
PDC deletion: the way to a man's heart disease.
THE HEART HAS continuous high-energy demands required to sustain efficient contraction. This is met by the metabolism of major circulating substrates (e.g., glucose, lactate, or lipids), according to availability, since the heart has a limited capacity for nutrient storage (reviewed in Ref. 16). Although fatty acid (FA) oxidation rates are invariably higher than glucose oxidation rates, glucose...
متن کاملCardiac-specific overexpression of the human type 1 angiotensin II receptor causes delayed repolarization.
AIMS Mice with cardiac-specific overexpression of human angiotensin II type 1 receptor (AT1R) undergo cardiac remodelling and die prematurely of sudden death. Since excessive QT prolongation is a major risk factor for ventricular arrhythmias and sudden death, we hypothesize that chronic stimulation of AT1R might contribute to sudden death by promoting delayed repolarization and ventricular arrh...
متن کاملAbnormal mitochondrial bioenergetics and heart rate dysfunction in mice lacking very-long-chain acyl-CoA dehydrogenase.
Mitochondrial very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is associated with severe hypoglycemia, cardiac dysfunction, and sudden death in neonates and children. Sudden death is common, but the underlying mechanisms are not fully understood. We report on a mouse model of VLCAD deficiency with a phenotype induced by the stresses of fasting and cold, which includes hypoglycemia, hyp...
متن کاملiNOS in cardiac myocytes plays a critical role in death in a murine model of hypertrophy induced by calcineurin.
Transgenic overexpression of calcineurin (CN/Tg) in mouse cardiac myocytes results in hypertrophy followed by dilation, dysfunction, and sudden death. Nitric oxide (NO) produced via inducible NO synthase (iNOS) has been implicated in cardiac injury. Since calcineurin regulates iNOS expression, and since phenotypes of mice overexpressing iNOS are similar to CN/Tg, we hypothesized that iNOS is pa...
متن کاملHypertrophy, fibrosis, and sudden cardiac death in response to pathological stimuli in mice with mutations in cardiac troponin T.
BACKGROUND Transgenic mouse models expressing a missense mutation (R92Q) or a splice donor site mutation (trunc) in the cardiac troponin T (cTnT) model familial hypertrophic cardiomyopathy (FHC) in humans. Although males from these strains share the unusual property of having significantly smaller ventricles and cardiac myocytes, they differ with regard to systolic function, fibrosis, and gene ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 295 3 شماره
صفحات -
تاریخ انتشار 2008